

**Freitag, 27. Februar 2026, 13.20 Uhr**

Ortenauhalle Kongress 1  
Tiefe Geothermie

Friday, 26 February 2026, 1.20 pm

Ortenauhalle Congress 1  
Deep geothermal energy



## **Viscosified System for Enhanced Acidizing of Geothermal Wells in Sandstone Formations**

*Tensid-basiertes System zur verbesserten Säurebehandlung von Geothermiebohrungen in Sandsteinformationen*

**Dr. N. Lummer, O. Rauf, M. Tepelmann, S. Gerdes**  
**Fangmann Energy Services GmbH & Co. Kg**

In geothermal projects, the main goal of acidizing injector wells in sandstones is scale removal and consequently injectivity increase. At low temperature, hydrochloric-based treatment fluids are commonly employed for this purpose. In this context, employing diverting agents to prevent acids from leaking into the most permeable sub-layer of the target zone is recommendable.

This paper presents the surfactant-based product SDA-550 which shows a tendency of forming rodlike micelles in acidic solutions. As shown in Figure 1, a chaotic worm-like arrangement of dissolved molecules leads to an increase in viscosity. This behavior creates a temporary blocking effect which causes fluid diversion and facilitates successful acidizing.

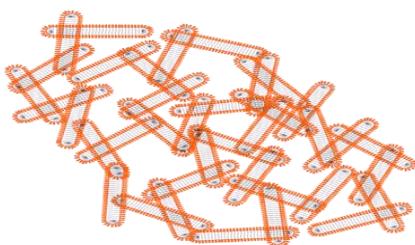



Figure 1: Macro-structure of surfactant-based product SDA-550 in acidic solutions.

Preparing the first field trial in a Dutch geothermal well, we performed extensive lab experiments regarding solubility of solid samples, corrosion of metal coupons, and rheology of acidic recipes containing different concentrations of SDA-550. The following table sums up the results of solubility testing with actual bailer samples from the well:

| Fluid                 | Composition                                          |                      |                  |
|-----------------------|------------------------------------------------------|----------------------|------------------|
| 1                     | 15% Hydrochloric Acid                                |                      |                  |
| 2                     | 15% Hydrochloric Acid + 25 kg/m <sup>3</sup> SCC-240 |                      |                  |
| <b>Test Parameter</b> |                                                      |                      |                  |
| Temperature, °C       | Δp N <sub>2</sub> , psi                              | Exposure Time, hours | Fluid Volume, mL |
| 40                    | Atm.                                                 | 2                    | 50               |
| <b>Test Results</b>   |                                                      |                      |                  |
| Weight before, g      | Weight after, g                                      | Weight Loss, g       | Solubility, %    |
| 1.003                 | 0.498                                                | 0.505                | 50               |
| 1.004                 | 0.277                                                | 0.727                | 72               |

As shown in Figure 2, the dosage of corrosion inhibitor added to the acidic systems suffices to protect L-80 metal coupons.

| Fluid                                                                               | Composition                                                                         |                                                                                     |                                                                                      |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1                                                                                   | 15% Hydrochloric Acid + 10 L/m <sup>3</sup> SCI-123                                 |                                                                                     |                                                                                      |
| 2                                                                                   | 15% Hydrochloric Acid + 25 kg/m <sup>3</sup> SCC-240 + 10 L/m <sup>3</sup> SCI-123  |                                                                                     |                                                                                      |
| <b>Test Parameter</b>                                                               |                                                                                     |                                                                                     |                                                                                      |
| Temperature, °C                                                                     | Δp N <sub>2</sub> , psi                                                             | Test Time @ 75°C, hours                                                             | Test Time @ 40°C, hours                                                              |
| 75 / 40                                                                             | 1,000                                                                               | 7                                                                                   | 14                                                                                   |
| <b>After 7 hours @ 75°C in Fluid 1</b>                                              |                                                                                     |                                                                                     |                                                                                      |
| Weight Loss, %                                                                      | Material Loss, lbs./ft <sup>2</sup>                                                 | Weight Loss, %                                                                      | Material Loss, lbs./ft <sup>2</sup>                                                  |
| 0.028                                                                               | 0.001                                                                               | 0.032                                                                               | 0.001                                                                                |
| <b>Coupon A: Before</b>                                                             | <b>Coupon A: After</b>                                                              | <b>Coupon B: Before</b>                                                             | <b>Coupon B: After</b>                                                               |
|  |  |  |  |

Figure 2: Results of corrosion testing with two different acidic recipes and L-80 coupons, as determined after 7 hours at 75°C.

For dissolving carbonates, as well as silicates in the Slochteren sandstone formation (BHST at approximately 75°C), HCl- and HCl/HF-based recipes were pumped in a stepwise approach (see table below). The addition of SDA-550 and hence the viscosity of the diverter step was adjusted based upon lab experience and in accordance with the client.

| Step                                                   | Volume             |
|--------------------------------------------------------|--------------------|
| 1 15% Hydrochloric Acid                                | 10 m <sup>3</sup>  |
| 2 5% Hydrochloric Acid + SDA-550 (viscosified Fluid)   | 4 m <sup>3</sup>   |
| 3 15% Hydrochloric Acid                                | 6 m <sup>3</sup>   |
| 4 15% Hydrochloric Acid + 25 kg/m <sup>3</sup> SCC-240 | 15 m <sup>3</sup>  |
| 5 5% Hydrochloric Acid                                 | 5 m <sup>3</sup>   |
| 6 Displacement 1 with Formation Water                  | 91 m <sup>3</sup>  |
| 7 Displacement 2 with Formation Water                  | 20 m <sup>3</sup>  |
| 8 Displacement 3 with Formation Water                  | 15 m <sup>3</sup>  |
| 9 Reaction Time                                        | 0 m <sup>3</sup>   |
| 10 Injection Test                                      | 198 m <sup>3</sup> |

The subsequent injection test with brine revealed a significant improvement in injectivity of the formation. While keeping the well head pressure at a constant level, we could increase the pumping rate by a factor of four.

Figure 3 summarizes the pumping schedule and Figure 4 shows equipment on site.

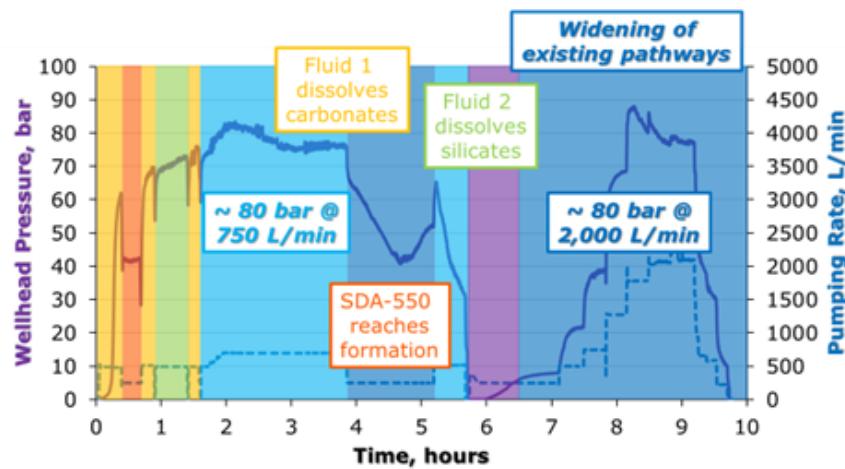



Figure 3: Pumping schedule.



Figure 4: Equipment on site.

This great result was achieved due to the superior chemical properties of our innovative diverter agent combined with the great effectiveness of the tailor-made treatment fluids. Thus, laboratory and field results impressively proof that we have reached the next level of acidizing sandstones..