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1. ABSTRACT 

 

Geothermal energy is a highly reliable, eco-

friendly, sustainable, and clean energy source 

that has proven to be a game-changer in the 

residential and industrial sectors. It can be 

developed from hot rocks saturated in 

geologically favorable reservoirs, in which 

water is produced at temperatures greater 

than 120 °C from a depth of up to 4 km 

utilizing an Electric Submersible Pump (ESP).  

Due to the flow rates required, high-enthalpy 

fluids, and harsh downhole conditions of 

geothermal wells, a real-time Well Manager 

System was implemented to improve the ESP 

design, operation, reliability, and well 

performance. This paper details the 

operating conditions of a high-efficiency 

geothermal ESP system in Germany with in- 

 

 

 

house developed machine learning models. 

Our Well Manager System has advanced to 

obtain virtual measurements, visual 

operating indices, vibrations tracking, real-

time pump, and well performance evaluation, 

electrical unbalance tracking, and scale 

detection. 

The machine learning models predicted 

pump intake pressure, motor temperature, 

fluid temperature, and flow rate, with less 

than 5% error compared to actual 

measurements. Additionally, the virtual 

parameters and real-time total dynamic head 

were analyzed together to indicate potential 

scale buildup within the flow meter or 

downhole components. 

A thorough assessment was made by 

https://doi.org/10.53196/gtj-2024


GeoTHERM-Journal – Band 2 (2024) 
 

https://doi.org/10.53196/gtj-2024 
 

continuously monitoring (24/7/365) the physical and digital aspects of the system,

enabling recommendations to improve 

power consumption and increase the ESP's 

run life. 

 

Keywords: GeoESP® pump, real-time 

monitoring, machine learning, scale 

detection, power optimization. 

 

 

2. INTRODUCTION 

 

Geothermal power is a clean and 

renewable source of energy from the 

earth’s crust, which has become an 

attractive alternative to coal, oil, and 

natural gas, allowing diversification of the 

energy matrix in countries where it has 

been developed. These energy systems are 

produced from sandstone reservoirs with 

a moderate-to-excellent productivity 

index which are usually unable to naturally 

lift the geothermal fluids to the surface at 

economically viable flow rates according 

to the energy demand [1]. To enable 

reliable water management in geothermal 

energy production, most operators rely on 

ESP systems that produce hot brines 

containing dissolved gas from harsh 

geothermic reservoirs to surface facilities. 

 

Once the ESP system is deployed in the 

well, the extreme temperatures, highly 

abrasive fluids, and corrosive 

environments [2], [3], [4], represent the 

principal challenges in high-efficient 

Geothermal Electric Submersible Pump 

applications (GeoESP® pump). Additional 

challenges include scale deposition, solids 

and abrasives production, fines migration, 

corrosive-erosive wear, resonant 

frequencies and high vibration, electrical 

insulation failure, pump performance 

tracking, excessive heat, high shafts, and 

thrust bearings loads.  Reliable ESP design 

to mitigate these issues is a vital part of the 

economic viability of the project.  

This article shares a successful case study 

of a geothermal well in Germany in which 

a real-time monitoring cloud system of the 

ESP allowed the optimization of operating 

parameters, detection of abnormal trends, 

avoidance of potential detrimental 

conditions, recommendations for sizing 

enhancements, support for the root-

cause-failure analysis, and improvement in 

the reliability of the whole system. To the 

author’s knowledge, very few works on 

real-time monitoring of ESP systems in 

geothermal wells have been published to 

date [5]. 
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3. METHODOLOGY 

 

3.1. GeoESP® pump application 

The installed high-efficiency GeoESP® 

pump system was designed for a target 

flow rate of up to 450 m3/h (125 L/s): 

▪ Mixed-flow centrifugal pumps with 

Inconel shafts, enhanced tungsten 

carbide thrust inserts, grooved 

bushings, unique retaining rings, 

and Erosion Buster® diffusers that 

help prevent scale deposition and 

abrasives recirculation. Given the 

wide range of operation of the 

pump, the ESP could maintain 

constant operation according to 

the heat requirement for different 

climatic seasons. 

▪ GeoESP® pump Intake with a 

metallic mesh to prevent large 

solids and rocks from entering the 

pumps, designed for lower 

pressure drop and enhanced 

power requirements. 

▪ Defender® Seals with labyrinth 

chambers, Durahard® 3 corrosion-

resistant coatings, and extended 

expansion capacity to cope with 

thermal cycling and calcium 

carbonate scale plugging. 

▪ Tandem motors with mechanical 

bearings retainers incorporated 

into large wide-profile Big Foot™ 

bearings, which allow movement 

of the rotor stack within the stator 

and heat transfer during thermal 

cycling, as well as tungsten carbide 

radial supports to reduce vibration. 

▪ High-temperature downhole gauge 

evaluated for the expected harsh 

downhole environment. 

The project can be described as a medium 

enthalpy doublet system. The ESP 

equipment was operated uninterrupted 

from start-up with a stable input power 

supply and within its recommended design 

limits. 

 

Fig. 1: GeoESP® pump schematic. 
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3.2. Monitoring and optimization 

The Intelevate™ Well Manager System is a 

customizable monitoring and 

collaboration cloud platform that was 

implemented for geothermal projects 

surveillance and digitalization of 

operations with GeoESP® pumps. The 

platform works with a Remote Terminal 

Unit (RTU) installed at the well site that 

serves as an EDGE device for monitoring 

data capture and computing, event 

diagnostics, machine learning 

deployment, and wireless sensor 

implementation using private VPN 

encrypted communications. This allows 

the geothermal plant and the GeoESP® 

pump to be monitored in real-time from 

computers, tablets, and cellphones on a 

24/7/365 basis.  

 

3.3. Machine learning models   

Statistical machine learning processes 

monitoring ESP systems is a relatively new 

technology in the oil and gas industry; it 

allows the prediction of multiple operating 

parameters with high precision and events 

detection by combining physical and 

trained mathematical models adjusted to 

each well [6]. A wellbore variable is fitted 

with a selected machine learning 

technique by using one or a combination 

of statistical learning models such as linear 

regression, logistic regression, decision 

trees, random forest, and neural networks 

in a time interval that includes a group of 

monitoring data. The selected model is 

then validated with data that was not 

involved in the previous training and the 

calculations are run in real-time in the 

 

Fig. 2: Machine learning models implementation in the Intelevate™ Well Manager System. 
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Intelevate™ Well Manager System. 

Once the GeoESP® pump is started, around 

2-3 weeks of data capture is required, 

including frequency changes for proper 

calibration of the machine learning 

models. In case of downhole gauge failure, 

the machine learning models enable the 

backup and continuous monitoring of the 

ESP with excellent prediction accuracy and 

low error (<5%), for pump intake pressure, 

motor temperature, fluid temperature, 

and produced total dynamic head (TDH).  

 

4. RESULTS   

 

4.1. GeoESP® virtual pump intake 
pressure 

The pump intake pressure (PIP) is the 

pressure exerted by the well fluid on the 

sensor head and serves as a critical 

diagnostic for pump performance as it is a 

function of flowing bottomhole pressure, 

fluid level over the pump, fluid 

composition, static reservoir pressure, 

flow rate, and productivity index.  

Local governmental authorities in 

Germany require a continuous real-time 

measurement of this pressure.  As shown 

in figure 3, the implemented Geo Virtual 

machine learning models can calculate the 

virtual PIP with less than 5% arithmetic  

error (less than 2 bar) by considering well 

conditions, equipment specifications, and 

past performance. 

The monitoring and comparison of this 

pressure between different installations of 

the same well allows the evaluation of 

several things: 

▪ The drawdown profile and time 

necessary to stabilize the 

productivity index of the 

geothermal reservoir (figure 4).  

▪ Detection of stage wear, scale 

accumulation, solids plugging, fluid 

recirculation, and productivity 

index changes (figure 5). This helps 

identify whether the well requires 

a lower total dynamic head (TDH) 

to produce similar flow rates 

compared to previous runs. 

▪ Recommendation of proactive 

chemical treatments for scale 

(figure 6). In this case, a downhole 

scale treatment was performed 

after the marked increase in the 

sensor pump intake pressure and 

Geo Virtual PIP error because of 

scale plugging at the intake ports. 

An increase in error can indicate 

possible adverse well conditions or 
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approaching ESP failure. 

 

 

 

 

 

Fig. 3: GeoESP virtual pump intake pressure tracking. 

 

 

Fig. 4: Startup profiles of different runs. 

 

Run 1

Run 2

Run 3

 

Fig. 5: Productivity index tracking. 

 

Run 1 Run 2 Run 3

 

Fig. 6: Proactive chemical treatment based on virtual parameters observations. 
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4.2. GeoESP virtual temperatures 

The motor winding and fluid temperatures 

are also predicted with less than 5% error 

(less than 2.5 °C), even during frequency 

reduction events, as seen by the 

overlapping curves in figure 7. The high 

wellbore temperature and scaling 

tendencies of the produced geofluids 

determine the baseline on which the 

motor will run and keeping track of these 

parameters is especially important for 

diagnosing organics deposition on the 

downhole components as well as fluid 

compositional changes. Exceeding the 

downhole gauge temperature ratings can 

cause frozen data at low runtimes. 

 

It is important to have the machine 

learning models already calibrated with 

data from the current or previous run to 

avoid the installation of backup sensors in 

the production string or additional surface 

hardware.  

 

4.3. GeoESP virtual flow rate 

Predicting flow rate using machine 

learning techniques is generally more 

challenging than the other operating 

variables. Until now, errors of 3% have 

been achieved, but in some cases, this can 

reach 5% (figure 8). It is worth highlighting 

that during frequency changes it has been 

possible to maintain the accuracy of the 

predictions. Also, if the surface flow meter 

is calibrated, it is necessary to recalibrate   

https://doi.org/10.53196/gtj-2024


GeoTHERM-Journal – Band 2 (2024) 
 

https://doi.org/10.53196/gtj-2024 
 

the machine learning model as well. 

 

 

 

 

 

 

 

 

 

Fig. 7: Geo virtual temperatures tracking. 

 

 

Fig. 8: Geo virtual flow rate tracking. 

 

 

Fig. 9: Required and produced total dynamic head tracking. 
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4.4 . GeoESP virtual TDH 

Considering the dynamic lift height, the 

friction loss in the tubing, and the 

necessary lift on the surface, it was 

possible to implement the real-time 

calculation of the required TDH [7], as well 

as the produced TDH based on the 

installed high-flow pump. The TDH 

tracking is used for identification of scale 

deposition on surface lines. In figure 9, 

after a flow meter calibration, the 

produced TDH by the pump equalized the 

required TDH by the well. This is an 

indicator of scale deposits inside the 

surface flow meter since its principle of 

operation is based on the fluid velocity 

through the cross-sectional area. 

 

4.5. Vibration tracking 

The vibration assessment of ESP systems 

considers that the most important 

amplitude occurs in the radial orientation, 

i.e., perpendicular to the length of the 

equipment since it affects the bearings and 

the stability of the shafts. In high-

production geothermal wells, the vibration 

is highly oscillatory, and its amplitude must 

be constantly observed to determine 

possible resonance frequencies. From 

historical data analysis, it has been 

determined that 0.5 G is a limit for peak 

vibrations in geothermal wells.  

Figure 10 shows how the vibration 

increases when operating the GeoESP® 

pump at resonance frequencies. 

Subsequently, it was possible to identify 

that this range of frequencies generated 

resonant vibrations; by avoiding it during 

speed reductions, there was a lower 

amplitude and peak of vibrations in the X 

and Y axes. 

The significant benefit of monitoring of 

these parameters is to prevent operation 

in resonance, which may affect the 

system’s mechanical integrity. 

  

4.6. Electrical unbalance tracking 

The output voltages and currents are the 

electrical energy supplied by the medium-

voltage variable speed drive and 

transmitted by the power cable to the 

electric submersible motor. In general, it is 

recommended that the output voltage and 

current unbalance be less than 3% when 

running at a steady frequency (figure 11). 

A deviation greater than 3% could be 

related to high harmonic distortion, faulty 

VSD output filters, phase insulation 

deterioration, ground phases, high leakage 

current, input power fluctuations, flat 

cable configuration, cable/splice 

https://doi.org/10.53196/gtj-2024


GeoTHERM-Journal – Band 2 (2024) 
 

https://doi.org/10.53196/gtj-2024 
 

impurities, manufacturing defects, 

unbalanced temperature distribution 

across the motor, buckling/bending, 

motor frame size, rough handling during 

shipment or resonance frequencies.  

The electrical unbalance is calculated by 

taking the arithmetic average and 

comparing it with the value of each 

electrical phase. In the following example, 

once the resonant frequencies were 

avoided during normal geothermal plant 

operations, it was possible to verify that 

the electrical unbalance decreased, which 

is favorable for a longer motor run life.  

  

 

4.7. Event detection 

Early detection of scale development or 

solids plugging at the downhole intake is 

performed while running at a constant 

frequency, based on a TDH and flow drop 

from expected conditions. Another 

indicator factor is a rapid vibration 

increase exactly during TDH changes. Also, 

from the Geo Virtual PIP calibration it was 

noticed that the pressure drop across the 

intake and friction losses were much 

higher compared to historical data. The 

combination of these findings is 

intrinsically related to scale build-up. 

  

 

 

 

Fig. 10: Vibration resonance. 

 

 

Fig. 11: A-phase current unbalance tracking during resonance frequencies. 

 

https://doi.org/10.53196/gtj-2024


GeoTHERM-Journal – Band 2 (2024) 
 

https://doi.org/10.53196/gtj-2024 
 

 

5. CONCLUSION 

 

The predicted virtual parameters using 

machine learning models are within 5% 

error for pressures, temperatures, and 

flow rate. The models have been 

implemented for more than 1500 days 

with successful results across more than 

12 applications. The virtual pump intake 

pressure, total dynamic head, and 

vibrations tracking help identify when 

scaling accumulates in the flow system 

which is particularly useful for detecting 

when a chemical treatment is required. In 

conclusion, the digitalization of the 

geothermal plant and downhole pump 

supports the development of rapid 

decision-making protocols when abnormal 

conditions arise, preserving the 

electromechanical integrity of the 

GeoESP® pump. 
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